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Abstract. We present an effective free-energy functional formalism which allows systematic 
&-expansion methods to be used deep inside the critical region. Applications are provided 
to a d-dimensional layered geometry with periodic boundary conditions, and calculations 
are presented for the shift of the critical temperature and its associated exponent A. The 
theory shows how the ( d  - 1)-dimensional physics emerges with power law dependences 
on the interlayer separation. 

1. Introduction 

Considerable interest exists in explaining finite-size effects on phase transitions. (A 
good review of the subject is given by Barber (1983).) Away from the critical region 
the finite size produces corrections to bulk thermodynamic variables and correlation 
functions. These corrections can be described in terms of the scaling variable y = Lt”, 
where t = ( T - T?)/ c is the reduced temperature, T: is the bulk critical temperature, 
L is a characteristic length scale for the finite system and v is the usual d-dimensional 
exponent. In addition, finite size produces a shift in the critical (or pseudocritical) 
temperature from to Tf. The exponent A describes the power law L dependence 
of this shift by 

c- T , L -  L - ~  L+m. (1) 
The &-expansion method is one of the most powerful renormalisation group tech- 

niques for studying the critical behaviour of bulk (see e.g. Amit 1978) and semi-infinite 
systems (Diehl and Dietrich 1981, Symanzik, 1981, Nemirovsky and Freed 1985a). 
Recently, it has been extended to consider systems of finite size (Nemirovsky and 
Freed (1985b), hereafter referred to as paper I). Paper I considers the N-vector 44 
field theory for a layered geometry, i.e. infinite in d - 1 dimensions and of thickness 
L in the .remaining dimension, satisfying periodic boundary conditions. The E 

expansion is shown to be well defined as long as Lt” 9 1. The correlation function, 
susceptibility and correlation length to O( E )  are explicitly evaluated in paper I where 
the critical exponents are found to be those of the d-dimensional theory for a system 
of infinite extent. When t s L-‘ /”  the perturbation expansion of paper I breaks down, 
becoming an expansion in a large dimensionless parameter proportional to ( L t Y ) - ’ .  
Hence, the methods of paper I do not allow a penetration deeper inside the critical 
region. 

This difficulty is understood in terms of the usual argument (see e.g. Barber 1983) 
that t = L-’I” should mark the beginning of a dimensional crossover from a d- 
dimensional behaviour away from the critical temperature to a d - 1 one (for a layered 
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geometry) very close to T:. This difficulty is also partially the reason for the conclusion 
of Brizin (1982) that &-expansion methods cannot be applied to evaluate finite-size 
scaling functions, a conclusion which arises from applying methods appropriate for 
Lt ’a  1 to the case of Lt’<< 1 (i.e. t =0) where they are not valid. A similar problem, 
which we discuss below in more detail, exists with the &-expansion calculation by Bray 
and Moore (1978) of A in (1). The rectification of this fundamental difficulty requires 
the development of a new &-expansion formalism which is specifically designed for 
the deep critical region of Lt “ 4 1. 

Although it is well known that the L + 0 limit for a layered geometry should produce 
( d  - 1)-dimensional physics, the parameter L does not disappear from the problem. 
By small L (L+  0) we mean the limits that L/a  + CO and {ll/a + CO, such that L/l11+ 0, 
where a and are the lattice spacing and the correlation length perpendicular to the 
layer thickness, respectively. (For instance, in experiments on critical phenomena in 
thin films (Meadows et a1 1979, Scheibner et a1 1979) L 3 0.4 pm.) Even in this L+  0 
limit, critical amplitudes can depend on L in a power law fashion such as the shift in 
the critical temperature (equation (1)). Important problems, which have previously 
not been solved, involve showing how the powerful field-theoretical techniques, used 
to calculate exponents and scaling functions in infinite systems, can be employed to 
study (a) the d-dimensional region (L  > rm( t) ,  + CO where Lm( t )  is the bulk correlation 
length), (b) the d’-dimensional region where d ’ =  d - 1 for a layered geometry (la> L, 
L+co) and (c) the dimensional crossover from d to d’. Paper I discusses the d- 
dimensional case (a) where finite-size effects produce small corrections to bulk quan- 
tities. This paper presents &-expansion techniques that allow a penetration deep inside 
the critical region where the L-dependent d - 1 physics emerges. We note that it was 
previously believed that &-expansion methods were not suitable to study any of the 
finite-size problems (a), (b) or (c) (Brizin 1982, Barber 1983). 

In this paper we use the same model of paper I, i.e. an N-vector 44 theory for a 
layered geometry with periodic boundary conditions, and consider the limit where the 
temperature approaches close to T:. In this limit there are, in fact, two small parameters 
present in the theory, the renormalised coupling constant and the thickness L, or, more 
properly, the ratio ( L/l l l ) .  The presence of two small parameters then forms the basis 
for a new &-expansion method that is designed especially for this region. 

The order parameter C#J(x) is periodic along the dth direction (parallel to the 
thickness) and can be expanded in Fourier series. When L is small compared with 
coarse graining length scales, i.e. near T i ,  only the lowest homogeneous mode C#Jo is 
relevant, while shorter wavelength modes C#Jj ( j  = 1,2, . . .) provide some corrections. 
This conclusion is substantiated by the calculations. Because calculations close to T; 
have L and g appearing in the combination gL-2, the formal assignment of L2 - g 
provides a consistent ordering recipe for the expansion in both small parameters. Then, 
an effective free-energy functional Fee can be systematically constructed as a series in 
powers of the coupling constant. We evaluate Fen formally to O(g) within this scheme, 
and show it to have the same structure as the Landau free-energy functional for a 
(d  - 1 )-dimensional infinite-volume field theory. This automatically implies that 
critical exponents near T: are those of a d - 1 system of infinite extent. However, Fen 
has non-trivial dependences on L. In the process of determining and renormalising 
Fen, the shift in the critical temperature is calculated to provide the ‘shift’ exponent A 
to O ( E ” )  where ~ ’ = 4 - ( d - 1 ) .  

The calculation proceeds in two steps. First, we use €-expansion techniques (valid 
only for d 4 4) to construct an L-dependent effective (d - 1)-dimensional free-energy 
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functional. In lowest order it has the same form as the Landau free-energy functional 
for a ( d  - 1)-dimensional 4: field theory in full space. Secondly, we study this d - 1 
field theory. Here, we utilise &'-expansion methods with E' = 4 - ( d  - 1) though this 
is not required, and other approaches (such as real space renormalisation group, etc) 
could have been employed. The techniques we utilise here to construct the effective 
free-energy functional follow analogous ones developed in the context of finite- 
temperature field theories (Ginsparg 1980). 

2. The model 

Consider an N-component scalar 44 theory for a d-dimensional (valid only for d S 4) 
layered system of thickness L satisfying periodic boundary conditions along the dth 
direction, i.e. the local (renormalised) order parameter 4( p, z) satisfies 

4(p ,z )=Cb(p ,z+L)  (2) 
where p is a (d-1)-dimensional vector perpendicular to the layer thickness. The 
Landau free-energy functional for the model is given by 

where t and g are the renormalised reduced temperature and coupling constant, 
respectively. The parameter p has dimensions of temperature and is introduced to 
define a dimensionless coupling constant. The numerical factors ( 2 ~ ) ~  and s d  = 
2rd'* / r (  d / 2 )  are placed before the quartic coefficient for later convenience. CTdenotes 
the renormalisation counterterms which, as discussed in paper I, are the usual bulk ones. 

The periodicity of 4( p, z )  in the interval [0, L] permits it to be expanded in a 
Fourier series 

with k the Fourier variable conjugate to p ,  and K~ = 2 j /  L. The partition function 2 
is given by 

( 5 )  

where D[4] represents the sum over all configurations of the order parameter that 
satisfy the periodic boundary conditions of (2). Using equations (3) and (4) and 
rescaling the fields 4 j ( k )  by a factor L-'" enables equation ( 5 )  to be written as 

z = j' or41 exp(-F{d}) 

- f' - [k2+t+(y)2]4 j (k)4 j ( -k)  dd-' k 
j=-CO 2 ( 2 r ) d - I  

j # O  
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When rescaling fields, the measure D [ 4 ]  acquires a multiplicative factor which is 
irrelevant for most purposes; it cancels when evaluating correlation functions, suscep- 
tibilities, correlation lengths, etc, and is therefore dropped in equation ( 6 ) .  To aid in 
integrating over the j # 0 modes, it is convenient to use diagrammatic techniques. The 
theory of equation ( 6 )  is described in terms of two propagators, one for the j = 0 mode 
and the other for the sum of the j # 0 modes, along with four 4-point vertices with 4, 
2 ,  1 and 0 j = 0 legs and 0, 2 ,  3 and 4 j # 0 ones, respectively. They are depicted in 
figures 1( a )  and ( b ) ,  and 2( a ) ,  ( b ) ,  (c )  and ( d ) ,  respectively. The effective free-energy 
.functional includes all diagrams with j = 0 external legs and j # 0 internal lines. Some 
examples are shown in figure 3. 

A diagram with E external lines and V vertices has the formal order g N  associated 
with it (Ginsparg 1980) where 

N = ; ( E  - 2 )  +f( V, + 2 Vd) (7) 
with V = V,  + V, + V, + v d ,  where V,, V,, V, and v d  are, respectively, the number of 
vertices of type ( a ) ,  ( b ) ,  ( c )  and ( d )  of figure 2.  The formal ordering relation L2 - g 
is employed to derive (7). It is readily found that the diagram of figure 3 ( a )  is 0th 
order in g, while figures 3 ( b )  and (c) are first order, and the remaining diagrams are 
of higher order. 

The lowest-order contribution to the effective free-energy functional comes from 
the diagram 3(a) .  It produces a shift in the coefficient of the term quadratic in the 

(a 1 ib l  
Figure 1. Diagrammatic representation of the two propagators present in the theory of 
equation (6):  ( a )  j = 0 mode, ( b )  sum of all the j # 0 modes. 

( d )  
Figure 2. Diagrammatic representation of the four types of vertices present in the theory 
of equation (6) .  

Figure 3. Some typical diagrams that arise in the construction of the effective free energy 
functional for the j = 0 mode. 
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field & ( k )  from t to ( ? + A t )  where A t  is calculated from diagram 3(a)  to be 

At  = -g(2 ."Ss , '~~"' 'L- ' [ (N+2) /3]  

The integration over q can be performed using standard rules (Amit 1978). After some 
algebra it is found that 

with (Y = -$+ ~ / 2 .  Since tL2<c 1, we use the expansion 

(j2+ u 2 ) - a  = 5(2a)  - a25(2a +2) +{a(a - l )a45(2a +4)+O(a6)  (10) 
] = I  

where 5 ( z )  is Riemann's zeta function. Then equation (9) can be rewritten as 

A t  = g(27r/L)'[( N+2)/3][&+t( ln  45-- y-2 In w L )  ( tL2/45-*)+0( tL2)2] (11) 
where y is Euler's constant, properties of [ ( z )  (Gradshteyn and Ryzhik 1965) have 
been used and the divergence associated with 5(2a + 2) as a + -1 has been cancelled 
by the usual bulk counterterms. More generally, the analogy between this problem 
and ones in finite-temperature field theory (Nemirovsky and Freed 1985b) can be used 
in conjunction with results of Ginsparg (1980) for finite-temperature field theory to 
show that the renormalised effective free-energy functional is finite to all orders in the 
coupling constant g and that the renormalisation constants are the same as in the full 
space theory. 

Inspecting equation (1 1 ) and using the formal ordering prescriptions L2 - g we 
find that (11) contains zeroth-, first-, second-, etc, order contributions to At. The 
lowest-order contributions to A t  arise solely from the diagram of figure 3(a) .  Diagrams 
3(b) and ( c )  provide first-order contributions, so consistency dictates inclusion of these 
diagrams when keeping the second term in the square brackets of equation (1 1). Hence, 
the effective free-energy functional is given to lowest order by 

with 
A t  = g(25-/ L)2[  ( N  + 2)/36]. 

3. Discussion 

The Fe, of equation (12) has the same form as the Landau free-energy functional for 
an infinite-volume 4; field theory in d - 1 dimensions, but it depends in a non-trivial 
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manner on L. It then follows that critical exponents produced by Fee are those of a 
( d  - 1)-dimensional system. The fixed point g* in this case is (Amit 1978) 

g* = [ ~ E ’ / ( N + ~ ) ] + O ( E ’ ~ )  (13) 
where ~ ’ = 4 - ( d -  l),  and the shift in the critical temperature, evaluated at the fixed 
point, is 

(14) t = - A t = - ’  6 [ (  N +2)/(  N + 8 ) ] ( 2 ~ / L ) ~ e ’ + O (  E ’ ~ ) .  

This result agrees with that obtained in paper I, equation (16), up to the replacement 
of E by E’. Finally, we consider the ‘shift’ exponent A. Equation (14) predicts A = 2 
formally to O(E’ ) .  However, from the results of our calculations it is possible to 
evaluate A formally to O ( E ’ ~ )  as follows: only In p L  contributions to At  can produce 
a modification in the exponent A. A In p L  portion appears in the second term in square 
brackets of equation (1 1). As discussed above, diagrams 3( b )  and (c)  are of the same 
formal order in g. However, it can be shown that they do not produce In p L  terms to 
order g. (They do in higher orders in g.) This occurs because the divergences are L 
independent (see e.g. Kislinger and Morley 1976), so the divergent contributions from 
figures 3(b) and (c) are of the form (g2/L2)(tL2)- g2. Thus, using equation ( l l ) ,  we 
can write 

A t  = g(2~/L)’ [ (  N +2)/3]{+- ( tLZ/4r2)  (;In p L +  FT) +O[( tL2)’, g2]} (15) 

where FT designates finite terms which do not contain In pL. Combining (13) and (15) 
yields 

(16) 
Bray and Moore (1978) consider a d-dimensional layered geometry with Dirichlet 

boundary conditions and evaluate the shift exponent A to O( E ) .  A problem with their 
approach is the fact that the first-order corrections Spl,o (in their notation) to mean-field 
temperature shifts is complex (see for instance their equations (4.7) and (4.8)). 
However, the leading contribution to in the limit L + m  is real, and it is in this 
approximation that the exponent A is extracted by them. Because the original 
expression for is complex, this approach is questionable. Similar difficulties have 
been noted by Dolan and Jackiw (1974) in the context of finite-temperature field 
theories where the standard perturbation theory breaks down close to the shifted critical 
temperature T: (Ginsparg 1980). The calculation of Bray and Moore attempts to 
calculate A using the limit ( k b  >> 1 in their notation) t + 0, L +  00 such that tL2 >> 1, 
whereas we employ the limit t + 0, L-, 00 such that tL2 << 1 which is more appropriate 
to the deep critical region. 

The effective free-energy functional method enables the description of the L depen- 
dence of a finite-size system very close to its critical temperature T: where a ( d  - 
1)-dimensional behaviour emerges. The methods of paper I describe the system away 
from criticality where the d-dimensional physics takes over. Both approaches provide 
the first systematic &-expansion techniques for exponents and critical amplitudes. The 
crossover between these two regimes remains to be explored. More details and 
expanded discussions of these topics will be given elsewhere. 

After the submission of this manuscript we received preprints by Brizin and 
Zinn-Justin (1985) and Rudnick er a1 ( 1985) discussing &-expansion techniques 
close to T i  for cubic and cylindrical geometries with periodic boundary conditions. 
Their approaches are similar to ours in the deep critical regions, although these authors 

A = 2 - [( N +2)/(  N + 8 ) ] ~ ’ + 0 (  E”).  
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consider cases where no true critical point exists, and they do not discuss the existence 
of the three regions of different effective dimensionality, presented here, and the fact 
that standard E techniques can be applied away from the critical point in the region 
of quasi-d-dimensional physics (Nemirovsky and Freed 1985b). 

It is still unclear if the fixed point g* to be employed, together with equation (15) 
to evaluate the shift exponent A, is the d-dimensional one as utilised by BrCzin et a1 
(1985) and Rudnick et a1 (1985) or the (d  - 1)-dimensional fixed point of equation 
(13) which follows the work of Ginsparg (1980) in the context of finite-temperature 
field theory. To first order in E ( & ’ )  the first assumption produces A = v i 1  while the 
second one gives h = vi!,. The effective free-energy functional of (12) is obtained 
from the original d-dimensional functional of (3) by integrating out the ‘heavy’ modes, 
and by using the usual d-dimensional counterterms to render Fe* finite. On the other 
hand, the effective d ’ =  d - 1 field theory of (12) should itself be renormalised by ( d  - 1) 
counterterms. We have studied Fefl only to lowest order. A systematic study of the 
effective field theory in higher orders, which we plan to pursue, should resolve this 
important question. 

Acknowledgments 

This research is supported by NSF grant DMR83-18560. We thank A Bray and M 
Moore for a useful discussion. 

References 

Amit D J 1978 Field Theory, the Renormalization Group and Critical Phenomena (New York: McGraw-Hill) 
Barber M N 1983 Finite-Size Scaling vol 8, ed C Domb and J L Lebowitz (New York: Academic) p 1 
Bray A J and Moore M A 1978 1. Phys. A: Math. Gen. 11 715 
Brt5zin E 1982 J. Physique 43 15 
BrCzin E and Zinn-Justin J 1985 Nucl. Phys. B in press 
Diehl H W and Dietrich S 1981 Z. Phys. B 42 65 
Dolan L and Jackiw R 1974 Phys. Rev. D 9 3320 
Ginsparg P 1980 Nucl. Phys. B 170 [FSl] 388 
Gradshteyn I S and Ryzhik I M 1965 Table oflntegruls, Series and Products (New York: Academic) 
Kislinger M B and Morley P D 1976 Phys. Rev. D 13 2771 
Meadows M R, Scheibner B A, Mockler R C and O’Sullivan W J 1979 Phys. Rev. Leu. 43 592 
Nemirovsky A M and Freed K F 1985a Phys. Rev. B 31 3161 
- 1985b J. Phys. A: Math. Gen. 18 L319 
- 1985c 1. Phys. A: Math. Gen. 18 3215 
- 1985d submitted for publication 
Rudnick J, Guo H and Jasnow D 1985 submitted for publication 
Scheibner B A, Meadows M R, Mockler R C and O’Sullivan W J 1979 Phys. Rev. Lett. 43 590 
Symanzik K 1981 Nucl. Phys. B 190 [FS3] 1 


